
Simple types

154

http://www.renderx.com
Prentice Hall PTR
This is a sample chapter of Definitive XML SchemaISBN: 0-13-065567-8For the full text, visit http://www.phptr.com©2001 Pearson Education. All Rights Reserved.

Chapter

9

B
oth element and attribute declarations can use simple types
to describe the data content of the components. This chapter
introduces simple types, and explains how to define your
own atomic simple types for use in your schemas.

9.1 Simple type varieties

There are three varieties of simple type: atomic types, list types, and
union types.

1. Atomic types have values that are indivisible, such as 10 and
large.

2. List types have values that are whitespace-separated lists of
atomic values, such as <availableSizes>10 large

2</availableSizes>.
3. Union types may have values that are either atomic values or list

values. What differentiates them is that the set of valid values,

155

http://www.renderx.com

or “value space,” for the type is the union of the value spaces of
two or more other simple types. For example, to represent a
dress size, you may define a union type that allows a value to
be either an integer from 2 through 18, or one of the string
values small, medium, or large.

List and union types are covered in Chapter 11, “Union and list
types.”

9.1.1 Design hint: How much should I break down
my data values?

Data values should be broken down to the most atomic level possible.
This allows them to be processed in a variety of ways for different uses,
such as display, mathematical operations, and validation. It is much
easier to concatenate two data values back together than it is to split
them apart. In addition, more granular data is much easier to validate.

It is a fairly common practice to put a data value and its units in
the same element, for example <length>3cm</length>. How-
ever, the preferred approach is to have a separate data value,
preferably an attribute, for the units, for example <length

units="cm">3</length>.
Using a single concatenated value is limiting because:

It is extremely cumbersome to validate. You have to apply a
complicated pattern that would need to change every time a
unit type is added.

You cannot perform comparisons, conversions, or mathematical
operations on the data without splitting it apart.

If you want to display the data item differently (for example, as
“3 centimeters” or “3 cm” or just “3”, you have to split it apart.
This complicates the stylesheets and applications that process
the instance document.

156 Chapter 9 | Simple types

http://www.renderx.com

It is possible to go too far, though. For example, you may break a
date down as follows:

<orderDate>
 <year>2001</year>
 <month>06</month>
 <day>15</day>
</orderDate>

This is probably an overkill unless you have a special need to process
these items separately.

9.2 Simple type definitions

9.2.1 Named simple types
Simple types can be either named or anonymous. Named simple types
are always defined globally (i.e., their parent is always schema or
redefine) and are required to have a name that is unique among the
data types (both simple and complex) in the schema. The XSDL syntax
for a named simple type definition is shown in Table 9–1.

The name of a simple type must be an XML non-colonized name,
which means that it must start with a letter or underscore, and may
only contain letters, digits, underscores, hyphens, and periods. You
cannot include a namespace prefix when defining the type; it takes its
namespace from the target namespace of the schema document.

All of the examples of named types in this book have the word “Type”
at the end of their names, to clearly distinguish them from element-
type names and attribute names. However, this is not a requirement;
you may in fact have a data type definition and an element declaration
using the same name.

Example 9–1 shows the definition of a named simple type Dress-
SizeType, along with an element declaration that references it. Named
types can be used in multiple element and attribute declarations.

9 . 2 | S i m p l e t y p e d e f i n i t i o n s 157

http://www.renderx.com

Table 9–1 XSDL syntax: named simple type definition

Name

simpleType

Parents

schema, redefine

Attribute
name

Type Required/
default

Description

id ID unique ID

name NCName required simple type name

final "#all" | list of
("extension" |

"restriction" |

"list" | "union")

defaults to
finalDefault

of schema

whether other types can
be derived from this
one, see Section 9.5

Content

annotation?, (restriction | list | union)

Example 9–1. Defining and referencing a named simple type

<xsd:simpleType name="DressSizeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="18"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:element name="size" type="DressSizeType"/>

9.2.2 Anonymous simple types
Anonymous types, on the other hand, must not have names. They are
always defined entirely within an element or attribute declaration, and
may only be used once, by that declaration. Defining a type anonymous-
ly prevents it from ever being restricted, used in a list or union, or

158 Chapter 9 | Simple types

http://www.renderx.com

redefined. The XSDL syntax to define an anonymous simple type is
shown in Table 9–2.

Table 9–2 XSDL syntax: anonymous simple type definition

Name

simpleType

Parents

element, attribute, restriction, list, union

Attribute name Type Required/default Description

id ID unique ID

Content

annotation?, (restriction | list | union)

Example 9–2 shows the definition of an anonymous simple type
within an element declaration.

Example 9–2. Defining an anonymous simple type

<xsd:element name="size">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="18"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

9.2.3 Design hint: Should I use named or anonymous
types?

The advantage of named types is that they may be defined once and
used many times. For example, you may define a type named Product-
CodeType that lists all of the valid product codes in your organization.

9 . 2 | S i m p l e t y p e d e f i n i t i o n s 159

http://www.renderx.com

This type can then be used in many element and attribute declarations
in many schemas. This has the advantages of:

encouraging consistency throughout the organization,

reducing the possibility of error,

requiring less time to define new schemas,

simplifying maintenance, because new product codes need only
be added in one place.

Named types can also make the schema more readable, when the
type definitions are complex.

An anonymous type, on the other hand, can be used only in the
element or attribute declaration that contains it. It can never be
redefined, have types derived from it, or be used in a list or union type.
This can seriously limit its reusability, extensibility, and ability to change
over time.

However, there are cases where anonymous types are preferable to
named types. If the type is unlikely to ever be reused, the advantages
listed above no longer apply. Also, there is such a thing as too much
reuse. For example, if an element can contain the values 1 through 10,
it does not make sense to try to define a data type named OneToTen-
Type that is reused by other unrelated element declarations with the
same value space. If the value space for one of the element declarations
that uses the named data type changes, but the other element declara-
tions do not change, it actually makes maintenance more difficult,
because a new data type needs to be defined at that time.

In addition, anonymous types can be more readable when they are
relatively simple. It is sometimes desirable to have the definition of the
data type right there with the element or attribute declaration.

160 Chapter 9 | Simple types

http://www.renderx.com

9.3 Simple type restrictions

Every simple type is a restriction of another simple type, known as its
base type. It is not possible to extend a simple type, except to add
attributes, which results in a complex type. This is described in Sec-
tion 14.4.1, “Simple content extensions.”

Every new simple type restricts the value space of its base type in
some way. Example 9–3 shows a definition of DressSizeType that
restricts the built-in type integer.

Example 9–3. Deriving a simple type from a built-in simple type

<xsd:simpleType name="DressSizeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="18"/>
 <xsd:pattern value="\d{1,2}"/>
 </xsd:restriction>
</xsd:simpleType>

Simple types may also restrict user-derived simple types that are
defined in the same schema document, or even in a different schema
document. For example, you could further restrict DressSizeType
by defining another simple type, MediumDressSizeType, as shown
in Example 9–4.

Example 9–4. Deriving a simple type from a user-derived simple type

<xsd:simpleType name="MediumDressSizeType">
 <xsd:restriction base="DressSizeType">
 <xsd:minInclusive value="8"/>
 <xsd:maxInclusive value="12"/>
 </xsd:restriction>
</xsd:simpleType>

A simple type restricts its base type by applying facets to restrict its
values. In Example 9–4, the facets minInclusive and maxInclu-

9 . 3 | S i m p l e t y p e r e s t r i c t i o n s 161

http://www.renderx.com

sive are used to restrict the value of MediumDressSizeType to be
between 8 and 12 inclusive.

9.3.1 Defining a restriction
The syntax for a restriction element is shown in Table 9–3. You
must specify one base type either by using the base attribute, or by
defining the simple type anonymously using a simpleType child. The
alternative of using a simpleType child is generally only useful when
restricting list types, as described in Chapter 11, “Union and list types.”

Table 9–3 XSDL syntax: simple type restriction

Name

restriction

Parents

simpleType

Attribute
name

Type Required/default Description

id ID unique ID

base QName either a base attribute or a
simpleType child is required

simple type that is
being restricted

Content

annotation? , simpleType? , (minExclusive | minInclusive |

maxExclusive | maxInclusive | length | minLength | maxLength

| totalDigits | fractionDigits | enumeration | pattern |

whiteSpace)*

Within a restriction element, you can specify any of the facets,
in any order. However, the only facets that may appear more than once
in the same restriction are pattern and enumeration. It is legal to

162 Chapter 9 | Simple types

http://www.renderx.com

define a restriction that has no facets specified. In this case, the derived
type allows the same values as the base type.

9.3.2 Overview of the facets
The available facets are listed in Table 9–4.

The XSDL syntax for applying a facet is shown in Table 9–5. All
facets must have a value attribute, which has different valid values

Table 9–4 Facets

Facet Meaning

minExclusive value must be greater than x

minInclusive value must be greater than or equal to x

maxInclusive value must be less than or equal to x

maxExclusive value must be less than x

length the length of the value must be equal to x

minLength the length of the value must be greater than or equal
to x

maxLength the length of the value must be less than or equal to x

totalDigits the number of significant digits must be less than or
equal to x

fractionDigits the number of fractional digits must be less than or
equal to x

whiteSpace the schema processor should either preserve, replace,
or collapse whitespace depending on x

enumeration x is one of the valid values

pattern x is one of the regular expressions that the value may
match

9 . 3 | S i m p l e t y p e r e s t r i c t i o n s 163

http://www.renderx.com

depending on the facet. Most facets may also have a fixed attribute,
as described in Section 9.3.4, “Fixed facets.”

Certain facets are not applicable to some types. For example, it does
not make sense to apply the fractionDigits facet to a character
string type. There is a defined set of applicable facets for each of the
built-in types1. If a facet is applicable to a built-in type, it is also
applicable to atomic types that are derived from it. For example, since
the length facet is applicable to string, if you derive a new type from
string, the length facet is also applicable to your new type. Sec-
tion 9.4, “Facets,” describes each of the facets in detail and lists the
built-in types to which the facet can apply.

9.3.3 Inheriting and restricting facets
When a simple type restricts its base type, it inherits all of the facets of
its base type, its base type’s base type, and so on back through its
ancestors. Example 9–4 showed a simple type MediumDressSizeType
whose base type is DressSizeType. DressSizeType has a pattern
facet which restricts its value space to one or two-digit numbers. Because
MediumDressSizeType inherits all of the facets from DressSizeType,
this same pattern facet applies to MediumDressSizeType also.
Example 9–5 shows an equivalent definition of MediumDressSize-
Type, where it restricts integer and has the pattern facet applied.

Sometimes a simple type definition will include facets that are also
specified for one of its ancestors. In Example 9–4, MediumDressSize-
Type includes minInclusive and maxInclusive, which are also
applied to its base type, DressSizeType. The minInclusive and
maxInclusive facets of MediumDressSizeType (whose values are

1. Technically, it is the primitive types that have applicable facets, with the
rest of the built-in types inheriting that applicability from their base types.
However, since most people do not have the built-in type hierarchy
memorized, it is easier to list applicable facets for all the built-in types.

164 Chapter 9 | Simple types

http://www.renderx.com

Table 9–5 XSDL syntax: facet

Name

minExclusive, minInclusive, maxExclusive, maxInclusive, length,
minLength, maxLength, totalDigits, fractionDigits, enumeration,
pattern, whiteSpace

Parents

restriction

Attribute name Type Required/default Description

id ID unique ID

value various required value of the restricting
facet

fixed boolean false;
n/a for pattern,
enumeration

whether the facet is fixed
and therefore cannot be
restricted further, see
Section 9.3.4

Content

annotation?

Example 9–5. Effective definition of MediumDressSizeType

<xsd:simpleType name="MediumDressSizeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="8"/>
 <xsd:maxInclusive value="12"/>
 <xsd:pattern value="\d{1,2}"/>
 </xsd:restriction>
</xsd:simpleType>

8 and 12, respectively) override those of DressSizeType (2 and 18,
respectively).

It is a requirement that the facets of the derived type (in this case
MediumDressSizeType) be more restrictive than those of the base
type. In Example 9–6, we define a new restriction of DressSizeType,

9 . 3 | S i m p l e t y p e r e s t r i c t i o n s 165

http://www.renderx.com

called SmallDressSizeType, and set minInclusive to 0. This type
definition is illegal, because it attempts to expand the value space by
allowing 0, which was not valid for DressSizeType.

Example 9–6. Illegal attempt to extend a simple type

<xsd:simpleType name="SmallDressSizeType">
 <xsd:restriction base="DressSizeType">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="6"/>
 </xsd:restriction>
</xsd:simpleType>

This rule also applies when you are restricting the built-in types. For
example, the short data type has a maxInclusive value of 32767.
It is illegal to define a restriction of short that sets maxInclusive to
32768.

Although enumeration facets can appear multiple times in the same
type definition, they are treated in much the same way. If both a derived
type and its ancestor have a set of enumeration facets, the values of
the derived type must be a subset of the values of the ancestor. An
example of this is provided in Section 9.4.4, “Enumeration.”

Likewise, the pattern facets specified in a derived type must allow
a subset of the values allowed by the ancestor types. Schema processors
will not necessarily check that the regular expressions represent a subset,
but it will instead validate instances against the patterns of both the
derived type and all the ancestor types, effectively taking the intersection
of the pattern values.

9.3.4 Fixed facets
When you define a simple type, you can fix one or more of the facets.
This means that further restrictions of this type cannot change the
value of the facet. Any of the facets may be fixed, with the exception
of pattern and enumeration. Example 9–7 shows our DressSize-

166 Chapter 9 | Simple types

http://www.renderx.com

Type with fixed minExclusive and maxInclusive facets, as indicated
by a fixed attribute that is set to true.

Example 9–7. Fixed facets

<xsd:simpleType name="DressSizeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2" fixed="true"/>
 <xsd:maxInclusive value="18" fixed="true"/>
 <xsd:pattern value="\d{1,2}"/>
 </xsd:restriction>
</xsd:simpleType>

With this definition of DressSizeType, it would have been illegal
to define the MediumDressSizeType as shown in Example 9–4 because
it attempts to override the minInclusive and maxInclusive facets,
which are now fixed. Some of the built-in types have fixed facets that
cannot be overridden. For example, the built-in type integer has its
fractionDigits facet fixed at 0, so it is illegal to derive a type from
integer and specify a fractionDigits that is not 0.

9.3.4.1 Design hint: When should I fix a facet?

Fixing facets makes your type less flexible, and discourages other schema
authors from reusing it. Keep in mind that any types that may be
derived from your type must be more restrictive, so you are not at risk
that your type will be dramatically changed if its facets are unfixed.

A justification for fixing facets might be that changing that facet
value would significantly alter the meaning of the type. For example,
suppose you want to define a simple type that represents price. You
define a Price type, and fix the fractionDigits at 2. This still allows
other schema authors to restrict Price to define other types, such as,
for example, a SalePrice type whose values must end in 99. However,
they cannot modify the fractionDigits of the type, because this
would result in a type not representing a price with both dollars and
cents.

9 . 3 | S i m p l e t y p e r e s t r i c t i o n s 167

http://www.renderx.com

9.4 Facets

9.4.1 Bounds facets
The four bounds facets (minInclusive, maxInclusive, minExclu-
sive, and maxExclusive) restrict a value to a specified range. Our
previous examples apply minInclusive and maxInclusive to restrict
the value space of DressSizeType. While minInclusive and max-
Inclusive specify boundary values that are included in the valid range,
minExclusive and maxExclusive specify values that are outside the
valid range.

There are several constraints associated with the bounds facets:

minInclusive and minExclusive cannot both be applied to
the same type. Likewise, maxInclusive and maxExclusive
cannot both be applied to the same type. You may, however,
mix and match, applying minInclusive and maxExclusive
together. You may also apply just one end of the range, such as
minInclusive only.

The value for the lower bound (minInclusive or minExclu-
sive) must be less than or equal to the value for the upper
bound (maxInclusive or maxExclusive).

The facet value must be a valid value for the base type. For
example, when restricting integer, it is illegal to specify a
maxInclusive value of 18.5, because 18.5 is not a valid
integer.

The four bounds facets can be applied only to the date/time and
numeric types, and types derived from them. Special consideration
should be given to time zones when applying bounds facets to date and
time types. For more information, see Section 12.4.12, “Date and time
ordering.”

168 Chapter 9 | Simple types

http://www.renderx.com

9.4.2 Length facets
The length facet allows you to limit values to a specific length. If it
is a string-based type, length is measured in number of characters. This
includes the legacy types and anyURI. If it is a binary type, length is
measured in octets of binary data. If it is a list type, length is measured
in number of items in the list. The facet value for length must be a
non-negative integer.

The minLength and maxLength facets allow you to limit a value’s
length to a specific range. Either of both of these facets may be applied.
If they are both applied, minLength must be less than or equal to
maxLength. If the length facet is applied, neither minLength nor
maxLength may be applied. The facet values for minLength and
maxLength must be non-negative integers.

The three length facets (length, minLength, maxLength) can be
applied to any of the string-based types (including the legacy types),
the binary types, QName, and anyURI. They cannot be applied to the
date/time types, numeric types, or boolean.

9.4.2.1 Design hint: What if I want to allow empty values?

Many of the built-in types do not allow empty values. Types other than
string, normalizedString, token, hexBinary, and base64-
Binary do not allow an empty value, unless xsi:nil appears in the
element tag.

There may be a case where you have an integer that you want to be
either between 2 and 18, or empty. First, consider whether you want
to make the element (or attribute) optional. In this case, if the data is
absent, the element will not appear at all. However, sometimes it is
desirable for the element to appear, as a placeholder, or perhaps it is
unavoidable because of the technology used to generate the instance.

If you do determine that the elements must be able to appear empty,
you must define a union data type that includes both the integer type
and an empty string. For example:

9 . 4 | F a c e t s 169

http://www.renderx.com

<xsd:simpleType name="DressSizeType">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="18"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value=""/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

9.4.2.2 Design hint: What if I want to restrict the length of
an integer?

The length facet only applies to the string-based types, the legacy
types, the binary types, and anyURI. It does not make sense to try to
limit the length of the date and time types because they have fixed
lexical representations. But what if you want to restrict the length of
an integer value?

You can restrict the lower and upper bounds of an integer by applying
bounds facets, as discussed in Section 9.4.1, “Bounds facets.” You can
also control the number of significant digits in an integer using the
totalDigits facet, as discussed in Section 9.4.3, “totalDigits and
fractionDigits.” However, these facets do not consider leading
zeros to be significant. Therefore, they cannot force the integer to
appear in the instance as a specific number of digits. To do this, you
need a pattern. For example, the pattern \d{1,2} used in our Dress-
SizeType example forces the size to be one or two digits long, so 012
would be invalid.

Before taking this approach, however, you should reconsider whether
it is really an integer or a string. See Section 12.3.3.1, “Design hint: Is
it an integer or a string?” for a discussion of this issue.

170 Chapter 9 | Simple types

http://www.renderx.com

9.4.3 totalDigits and fractionDigits
The totalDigits facet allows you to specify the maximum number
of digits in a number. The facet value for totalDigits must be a
positive integer.

The fractionDigits facet allows you to specify the maximum
number of digits in the fractional part of a number. The facet value
for fractionDigits must be a non-negative integer, and it must not
exceed the value for totalDigits, if one exists.

The totalDigits facet can be applied to decimal or any of the
integer types, and types derived from them. The fractionDigits
facet may only be applied to decimal, because it is fixed at 0 for all
integer types.

9.4.4 Enumeration
The enumeration facet allows you to specify a distinct set of valid
values for a type. Unlike most other facets (except pattern), the
enumeration facet can appear multiple times in a single restriction.
Each enumerated value must be unique, and must be valid for that
type. If it is a string-based or binary data type, you may also specify the
empty string in an enumeration value, which allows elements or
attributes of that type to have empty values.

Example 9–8 shows a simple type SMLXSizeType that allows the
values small, medium, large, and extra large.

When restricting types that have enumerations, it is important to
note that you must restrict, rather than extend, the set of enumeration
values. For example, if you want to restrict the valid values of SMLSize-
Type to only be small, medium, and large, you could define a simple
type as in Example 9–9.

Note that you need to repeat all of the enumeration values that apply
to the new type. This example is legal because the values for SMLSize-
Type (small, medium, and large) are a subset of the values for
SMLXSizeType. By contrast, Example 9–10 attempts to add an enu-
meration facet to allow the value extra small. This type definition

9 . 4 | F a c e t s 171

http://www.renderx.com

Example 9–8. Applying the enumeration facet

<xsd:simpleType name="SMLXSizeType">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="extra large"/>
 </xsd:restriction>
</xsd:simpleType>

Example 9–9. Restricting an enumeration

<xsd:simpleType name="SMLSizeType">
 <xsd:restriction base="SMLXSizeType">
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 </xsd:restriction>
</xsd:simpleType>

is illegal because it attempts to extend rather than restrict the value
space of SMLXSizeType.

Example 9–10. Illegal attempt to extend an enumeration

<xsd:simpleType name="XSMLXSizeType">
 <xsd:restriction base="SMLXSizeType">
 <xsd:enumeration value="extra small"/>
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="extra large"/>
 </xsd:restriction>
</xsd:simpleType>

The only way to add an enumeration value to a type is by defining
a union type. Example 9–11 shows a union type that adds the value
extra small to the set of valid values. Union types are described in
detail in Chapter 11, “Union and list types.”

172 Chapter 9 | Simple types

http://www.renderx.com

Example 9–11. Using a union to extend an enumeration

<xsd:simpleType name="XSMLXSizeType">
 <xsd:union memberTypes="SMLXSizeType">
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="extra small"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

When enumerating numbers, it is important to note that the enu-
meration facet works on the actual value of the number, not its lexical
representation as it appears in an XML instance. Example 9–12 shows
a simple type NewSmallDressSizeType that is based on integer,
and specifies an enumeration of 2, 4, and 6. The two instance elements
shown, which contain 2 and 02, are both valid. This is because 02 is
equivalent to 2 for integer-based types. However, if the base type of
NewSmallDressSizeType had been string, the value 02 would not
be valid, because the strings 2 and 02 are not the same. If you wish to
constrain the lexical representation of a numeric type, you should apply
the pattern facet instead. For more information on type equality in
XML Schema, see Section 12.7, “Type equality.”

The enumeration facet can be applied to any type except boolean.

9.4.5 Pattern
The pattern facet allows you to restrict values to a particular pattern,
represented by a regular expression. Chapter 10, “Regular expressions,”
provides more detail on the rules for the regular expression syntax.
Unlike most other facets (except enumeration), the pattern facet
can be specified multiple times in a single restriction. If multiple
pattern facets are specified in the same restriction, the instance value
must match at least one of the patterns. It is not required to match all
of the patterns.

9 . 4 | F a c e t s 173

http://www.renderx.com

Example 9–12. Enumerating numeric values

Schema:

<xsd:simpleType name="NewSmallDressSizeType">
 <xsd:restriction base="xsd:integer">
 <xsd:enumeration value="2"/>
 <xsd:enumeration value="4"/>
 <xsd:enumeration value="6"/>
 </xsd:restriction>
</xsd:simpleType>

Valid instances:

<size>2</size>
<size>02</size>

Example 9–13 shows a simple type DressSizeType that includes
the pattern \d{1,2}, which restricts the size to one or two digits.

Example 9–13. Applying the pattern facet

<xsd:simpleType name="DressSizeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="18"/>
 <xsd:pattern value="\d{1,2}"/>
 </xsd:restriction>
</xsd:simpleType>

When restricting types that have patterns, it is important to note
that you must restrict, rather than extend, the set of valid values that
the patterns represent. In Example 9–14, we define a simple type
SmallDressSizeType that is derived from DressSizeType, and add
an additional pattern facet that restricts the size to one digit.

174 Chapter 9 | Simple types

http://www.renderx.com

Example 9–14. Restricting a pattern

<xsd:simpleType name="SmallDressSizeType">
 <xsd:restriction base="DressSizeType">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="6"/>
 <xsd:pattern value="\d{1}"/>
 </xsd:restriction>
</xsd:simpleType>

It is not technically an error to apply a pattern facet that does not
represent a subset of the ancestors’ pattern facets. However, the schema
processor tries to match the instance value against the pattern facet of
both the type and its ancestors, ensuring that it is in fact a subset.
Example 9–15 shows an illegal attempt to define a new size type that
allows the size value to be up to three digits long. While the schema is
not in error, it will not have the desired effect because the schema
processor will check values against both the pattern of LongerDress-
SizeType and the pattern of DressSizeType. The value 004 would
not be considered a valid instance of LongerDressSizeType because
it does not conform to the pattern of DressSizeType.

Unlike the enumeration facet, the pattern facet applies to the
lexical representation of the value. If the value 02 appears in an instance,
the pattern is applied to the digits 02, not 2 or +2 or any other form
of the integer.

The pattern facet can be applied to any type.

Example 9–15. Illegal attempt to extend a pattern

<xsd:simpleType name="LongerDressSizeType">
 <xsd:restriction base="DressSizeType">
 <xsd:pattern value="\d{1,3}"/>
 </xsd:restriction>
</xsd:simpleType>

9 . 4 | F a c e t s 175

http://www.renderx.com

9.4.6 Whitespace
The whiteSpace facet allows you to specify the whitespace normaliza-
tion rules which apply to this value. Unlike the other facets, which
restrict the value space of the type, the whiteSpace facet is an
instruction to the schema processor as to what to do with whitespace.
The valid values for the whiteSpace facet are:

preserve: All whitespace is preserved; the value is not changed.
This is how XML 1.0 processors handle whitespace in the
character data content of elements.

replace: Each occurrence of a tab (#x9), line feed (#xA), and
carriage return (#xD) is replaced with a single space (#x20). This
is how XML 1.0 processors handle whitespace in attributes of
type CDATA.

collapse: As with replace, each occurrence of tab (#x9), line
feed (#xA) and carriage return (#xD) is replaced with a single
space (#x20). After the replacement, all consecutive spaces are
collapsed into a single space. In addition, leading and trailing
spaces are deleted. This is how XML 1.0 processors handle
whitespace in all attributes that are not of type CDATA.

Table 9–6 shows examples of how values of a string-based type will
be handled depending on its whiteSpace facet.

Table 9–6 Handling of string values depending on whiteSpace facet

Original string string

(preserve)
normalizedString

(replace)
token

(collapse)
a string a string a string a string

on
two lines

on
two lines

on two lines on two lines

has spaces has spaces has spaces has spaces

 leading tab leading tab leading tab leading tab

 leading spaces leading spaces leading spaces leading spaces

176 Chapter 9 | Simple types

http://www.renderx.com

The whitespace processing, if any, will happen first, before any vali-
dation takes place. In Example 9–8, the base type of SMLXSizeType
is token, which has a whiteSpace facet of collapse. Example 9–16
shows valid instances of SMLXSizeType. They are valid because the
leading and trailing spaces are removed, and the line feed is turned into
a space. If the base type of SMLXSizeType had been string, the
whitespace would have been left as is, and these values would have been
invalid.

Example 9–16. Valid instances of SMLXSizeType

<size> small </size>

<size>extra
large</size>

Although you should understand what the whiteSpace facet repre-
sents, it is unlikely that you will ever apply it directly in your schemas.
The whiteSpace facet is fixed at collapse for most built-in types.
Only the string-based types can be restricted by a whiteSpace facet,
but this is not recommended. Instead, select a base type that already
has the whiteSpace facet you want. The data types string,
normalizedString, and token have the whiteSpace values
preserve, replace, and collapse, respectively. For example, if you
wish to define a string-based type that will have its whitespace collapsed,
base your type on token, instead of basing your type on string and
applying a whiteSpace facet. Section 12.2.1, “string, normalized-
String, and token,” provides a discussion of these three types.

9.5 Preventing simple type derivation

XML Schema allows you to prevent derivation of other types from
your type. By specifying the final attribute in your simple type defi-
nition, you may prevent derivation of any kind (restriction, extension,

9 . 5 | P r e v e n t i n g s i m p l e t y p e d e r i v a t i o n 177

http://www.renderx.com

list, or union) by specifying a value of #all. If you want more specific
control, the value of final can be a whitespace-separated list of any
of the keywords restriction, extension, list, or union. Extension
refers to the extension of simple types to derive complex types, described
in Chapter 14, “Deriving complex types.” Example 9–17 shows some
valid values for final.

Example 9–17. Valid values for the final attribute in simple type definitions

final="#all"
final="restriction list union"
final="list restriction extension"
final="union"
final=""

Example 9–18 shows a simple type that cannot be restricted by any
other type, or used as the item type of a list. With this definition of
DressSizeType, it would have been illegal to define MediumDress-
SizeType in Example 9–4 because it attempts to restrict DressSize-
Type.

Example 9–18. Preventing type derivation

<xsd:simpleType name="DressSizeType" final="restriction list">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="18"/>
 </xsd:restriction>
</xsd:simpleType>

If no final attribute is specified, it defaults to the value of the
finalDefault attribute of the schema element. If neither final nor
finalDefault are specified, there are no restrictions on derivation
from that type. You can specify the empty string ("") for the final
value if you want to override the finalDefault value.

178 Chapter 9 | Simple types

http://www.renderx.com

